Divisor topology and GV invariants of CICYs

Federico Carta

Durham University
7th of July 2022

Based on...

(1) Divisor topologies of CICY 3-folds and their applications to phenomenology

- F.C, A. Mininno, P. Shukla. 2022
(2) Gopakumar-Vafa hierarchies in winding inflation and uplifts
- F.C, A. Mininno, N. Righi, A. Westphal. 2021

Motivation

- One of the main goals of String Phenomenology is to make concrete string models which:
(1) Reproduce the esablished low-energy physics (SM, Λ CDM...)
(2) Extend the esablished low-energy physics (DM, SUSY, Inflation...)
- Type II string theory on $\mathbb{R}^{1,3} \times X_{6}$, with X_{6} compact CY 3-fold.
- 4d EFT is $\mathcal{N}=2$ SUGRA. More realistic $\mathcal{N}=1$ EFTs arise from modding out by an orientifold action $\Omega \mathcal{R}(-1)^{F_{L}}$
- Focus on IIB, with orientifold action allowing for $O 3 / O 7$ planes. Typical setup for the flux landscape (GKP '01. KKLT '03)
- Properties of the CY orientifold fix properties of the low energy 4 d EFT.

Complex structure moduli stabilization

Prepotential has a polynomial part, and instanton corrections

$$
\begin{align*}
& \mathcal{F}(U)=\mathcal{F}_{\text {poly }}\left(U^{i}\right)+\mathcal{F}_{\text {inst }}\left(U^{i}\right) \tag{1}\\
& \mathcal{F}_{\text {inst }}=\frac{1}{(2 \pi i)^{3}} \sum_{d_{i}} A_{d_{i}} e^{2 \pi i d_{i} U^{i}} \tag{2}
\end{align*}
$$

- GVs n_{β}^{g} (naively) count the number of holomorphic maps from worldsheet to a curve in the class $\beta=q^{i} \beta_{i} \in H^{2}(\tilde{X}, \mathbb{Z})$.

$$
\begin{align*}
\mathcal{F}_{\text {inst }}\left(U^{i}\right) & =\frac{1}{(2 \pi i)^{3}} \sum_{\beta \in H_{2}^{-}\left(\tilde{X}_{3}, \mathbb{Z}\right) \backslash\{0\}} n_{\beta} \operatorname{Li}_{3}\left(q^{\beta}\right) \\
\operatorname{Li}_{3}(x) & =\sum_{m=1}^{\infty} \frac{x^{m}}{m^{3}}, \quad q^{\beta}=e^{2 \pi i d_{i} U^{i}} \tag{3}
\end{align*}
$$

Complete intersection CYs

- Defined as the zero locus \tilde{X} of a set of homogeneous polynomials $p_{i}[x],(i=1, \ldots K)$ in an ambient space $\mathcal{A}=\mathbb{P}^{n_{1}} \times \ldots \mathbb{P}^{n_{s}}$
- Multidegrees of $p_{i}[x]$ encoded in the configuration matrix.

x^{i}	\mathbb{P}^{2}	0	2	0	1
y^{i}	\mathbb{P}^{2}	2	1	0	0
w^{i}	\mathbb{P}^{3}	1	1	1	1

$$
\sum_{i=1}^{s} n_{i}-K=3
$$

$$
\begin{align*}
& p_{1}[x]=a_{i j k} y^{i} y^{j} w^{k}, \\
& p_{2}[x]=b_{i j k l} x^{i} x^{j} y^{k} w^{l}, \tag{4}\\
& p_{3}[x]=c_{i} w^{i}, \\
& p_{4}[x]=d_{i j} x^{i} w^{j} .
\end{align*}
$$

- List of at most 7890 (possibly) distinct CY constructed in this way. (Candelas, Dale, Lutken, Schimmrigk '87) (Green, Hubsch, Lutken '89) (Anderson, Gao, Gray, Lee '17)

Computing the genus 0 GV by Mirror symmetry

 (Hosono, Klemm, Theisen, Yau, '94)- $\Pi(z)=\left(w_{0}(z),\left.\frac{\partial}{\partial \rho_{i}} w_{0}(z, \rho)\right|_{\rho=0}, \ldots\right)^{t}$
- $w_{0}(z)=\sum_{n_{1} \geq 0} \cdots \sum_{n_{h^{2}, 1} \geq 0} c(n) \prod_{i=1}^{h^{2,1}} z_{i}^{n_{i}}$.

Generic solution of the PF equation for the first entry of the period vector, in terms of data in the configuration matrix.

- $w_{i}(z)=$
$\left.\sum_{n_{1} \geq 1} \cdots \sum_{n_{h^{2}, 1} \geq 0} \frac{1}{2 \pi i} \frac{\partial}{\partial \rho^{i}} c(n+\rho)\right|_{\rho=0} \prod_{i=1}^{h^{2,1}} z_{i}^{n_{i}}+w_{0}(z) \frac{\ln z_{i}}{2 \pi i}$
- $t^{i}=\frac{w_{i}(z)}{w_{0}(z)}$ mirror map. Relation between Kahler moduli at large radius in the A-model side, with complex structure moduli at LCS in the B -model side.
- Now, invert the mirror map in order to get $z(t)$. Hardest step.

Computing the genus 0 GV by Mirror symmetry

(Hosono, Klemm, Theisen, Yau, 94)

- Having $z(t)$, compute the quantum corrected triple intersection number

$$
k_{i j k}=\frac{\partial}{\partial t_{i}} \frac{\partial}{\partial t_{j}} \frac{\left.\frac{1}{2} k_{k a b}^{0} \frac{\partial}{\partial \rho_{a}} \frac{\partial}{\partial \rho_{a}} w_{0}(z, \rho)\right|_{\rho=0}}{w_{0}(z)}(t)
$$

- Introduce $q_{i}=\exp \left(2 \pi i t_{i}\right)$, and the general expression for the quantum corrected triple intersection number

$$
k_{i j k}=k_{i j k}^{0}+\sum_{n_{1} \geq 1} \ldots \sum_{n_{h^{2,1} \geq 0}} n_{d_{1}, \ldots, d_{\bar{h}}, 1} d_{i} d_{j} d_{k} \frac{\prod_{l=1}^{\bar{h}^{1,1}} q_{l}^{d_{l}}}{1-\prod_{l=1}^{\bar{h}_{l}^{1,1}} q_{l}^{d_{l}}}
$$

- Match and extract the GV.

Instanton program, and the scan

- The above algorithm has been coded in a program called Instanton. (Klemm, Kreuzer)
- Made modification of their code, parallelized it, and let it run.
- Computing time ≈ 6 months, on two different clusters (DESY and Madrid IFT)
- List all the genus 0 GV, up to total degree 10 , for all favourable CICY up to $h^{1,1}=9$.
- We find directions in the Picard lattice in which the GV invariants grow at hierarchical rates, as well as "vanishing directions" (Demirtas, Kim, McAllister, Moritz '20) and "periodic directions".
- List at
www.desy.de/~westphal/GV_CICY_webpage/GVInvariants.html

Occupation sites for CICY $7858\left(h^{1,1}=2\right)$

Figure: Blue=non-zero GV. Black = zero GV. Orange = not computed, believed to be non-zero GV. Green = non-vanishing direction. Purple = vanishing direction.

The need for rigid divisors

- Suppose we have fully stabilized the c.s. moduli. At lower energy if there are no non-perturbative effects, Kahler moduli have a flat potential (no scale). $W=W_{0}:=\left\langle W_{G V W}\right\rangle$
- Non-trivial potential for Kahler moduli can be generated by the presence of Euclidean E3s or D7-branes.

$$
\begin{equation*}
W(T)=W_{0}+\sum_{\vec{n}} A_{\vec{n}} e^{-2 \pi n_{a} T^{a}} \tag{5}
\end{equation*}
$$

- However, not any holomorphic 4-cycle will do the job.
- Relevant to ask: does your compactification space admit such nice 4-cycles?

Rigidity, ampleness

Rigidity

- In order to generate non-perturbative contribution to the superpotential, E3 or D7 need to wrap a rigid divisor.
- Rigid $=$ no normal bundle deformations. $\mathcal{O}(D)$ has a unique section. $h^{2,0}(D)=0$.
- $\chi_{h}(D)=1$ is a necessary condition for nontrivial $W_{n p}$.

Ampleness

- If a divisor is ample (and rigid) a single E3 or D7 wrapped on them can stabilize all saxions of the T^{a} and a combination of the C_{4} axions. (Bobkov et al. '21)

$$
\begin{equation*}
W_{n p}=A \exp \left[-i \sum_{\alpha=1}^{h_{+}^{1,1}} a_{\alpha} T_{\alpha}\right] \tag{6}
\end{equation*}
$$

More on ampleness

- (Nakai-Moishezon) A divisor D is ample if for every closed subvariety $Y \subset X$

$$
\begin{equation*}
D^{\operatorname{dim}(Y)} \cdot Y>0 \tag{7}
\end{equation*}
$$

- Another way to define it is a codimension one surface with ample canonical bundle. (i.e. opposite of del Pezzo surfaces). Also called surface of general type.

$$
\begin{equation*}
c_{1}^{2}=\int_{D} c_{1}(D) \wedge c_{1}(D)>0, \quad c_{2}=\int_{D} c_{2}(D)>0 \tag{8}
\end{equation*}
$$

- Some properties

$$
\begin{gather*}
h^{p, q}(X)=h^{p, q}(D), \quad \forall p+q<2 \tag{9}\\
\pi_{i}(X)=\pi_{i}(D), \quad \forall i<2 \tag{10}
\end{gather*}
$$

Divisor topologies

- We want to discuss what is the topology of divisors D of CICYs.
- Solve this problem for coordinate divisors (i.e. $x_{i}=0$).
- $h^{i j}(D)$ can be computed via Koszul spectral sequence, and knowledge of $H^{i}(X, D)$.
- Can use Cohomcalg to do this computation. (Blumenhagen et al. '10, '11) However, starting from $h^{1,1}(X)=5$, it gets very slow.

Idea!

$$
\begin{align*}
& \chi(D)=2 h^{0,0}-4 h^{1,0}+2 h^{2,0}+h^{1,1}=\int_{X}\left(\hat{D} \wedge \hat{D} \wedge \hat{D}+c_{2}(X) \wedge \hat{D}\right) \tag{11}\\
& \chi_{h}(D)=h^{0,0}-h^{1,0}+h^{2,0}=\frac{1}{12} \int_{X}\left(2 \hat{D} \wedge \hat{D} \wedge \hat{D}+c_{2}(X) \wedge \hat{D}\right) \tag{12}
\end{align*}
$$

Conjecture connected, simply connected.

- Conjecture that, for all favorable $\operatorname{CICYs}, h^{0,0}(D)=1$ and $h^{1,0}(D)=0$. Connected and simply connected.
- Conjecture verified by explicit computation up to $h^{1,1}(X)=6$. Have counterexamples for non-favourable CICYs.
- Now trivially solve for $h^{1,1}(D)$ and $h^{2,0}(D)$.

1

$$
0
$$

$$
D \equiv\left(\chi_{h}-1\right) \quad 0 \begin{gather*}
\left(\chi-2 \chi_{h}\right) \tag{0}\\
1
\end{gather*} \quad 0 \quad\left(\chi_{h}-1\right)
$$

Results

Sr. $\#$	Divisor topology $\left\{h^{0,0}, h^{1,0}, h^{2,0}, h^{11}\right\}$	frequency $(57885$ divisors $)$	frequency $(7820$ spaces $)$	$h^{1,1}$ (pCICY)	$\int_{\mathrm{CY}} \hat{D}^{3}$
T1	$K 3 \equiv\{1,0,1,20\}$	30901	7736	$2-15$	0
T2	$\{1,0,2,30\}$	22150	7436	$2-15$	0
T3	$\{1,0,3,38\}$	3372	2955	$2-13$	2
T4	$\{1,0,3,36\}$	91	91	$3-13$	4
T5	$\{1,0,4,46\}$	714	690	$2-11$	4
T6	$\{1,0,4,45\}$	283	277	$1-11$	5
T7	$\{1,0,4,44\}$	91	91	$2-11$	6
T8	$\{1,0,5,52\}$	198	198	$1-9$	8
T9	$\{1,0,5,51\}$	28	28	$1-9$	9
T10	$\{1,0,6,58\}$	42	42	$1-7$	12
T11	$\{1,0,7,64\}$	15	15	$1-5$	16

Table 2: Divisor topologies for favorable pCICYs and their frequencies of appearance.

Conclusions and future directions

Summarizing the results:

- Compute explicitly genus zero GV up to degree 10 for all favourable CICYs up to $h^{1,1}=9$.
- Classify topologies of coordinate divisors in CICYs. None of them is rigid.

For the future:

- Does something funny happen for non-favourables? Schoen etc.
- Interesting to perform similar tasks in KS.
- Topologies of non-coordinate divisors.
- Global models on CICYs in generic toric ambient spaces and on gCICYs are essentially unexplored.

